Cardiac Regeneration from Activated Epicardium

نویسندگان

  • Bram van Wijk
  • Quinn D. Gunst
  • Antoon F. M. Moorman
  • Maurice J. B. van den Hoff
چکیده

In contrast to lower vertebrates, the mammalian heart has a very limited regenerative capacity. Cardiomyocytes, lost after ischemia, are replaced by fibroblasts. Although the human heart is able to form new cardiomyocytes throughout its lifespan, the efficiency of this phenomenon is not enough to substitute sufficient myocardial mass after an infarction. In contrast, zebrafish hearts regenerate through epicardial activation and initiation of myocardial proliferation. With this study we obtain insights into the activation and cellular contribution of the mammalian epicardium in response to ischemia. In a mouse myocardial infarction model we analyzed the spatio-temporal changes in expression of embryonic epicardial, EMT, and stem cell markers and the contribution of cells of the Wt1-lineage to the infarcted area. Though the integrity of the epicardial layer overlaying the infarct is lost immediately after the induction of the ischemia, it was found to be regenerated at three days post infarction. In this regenerated epicardium, the embryonic gene program is transiently re-expressed as well as proliferation. Concomitant with this activation, Wt1-lineage positive subepicardial mesenchyme is formed until two weeks post-infarction. These mesenchymal cells replace the cardiomyocytes lost due to the ischemia and contribute to the fibroblast population, myofibroblasts and coronary endothelium in the infarct, and later also to the cardiomyocyte population. We show that in mice, as in lower vertebrates, an endogenous, epicardium-dependent regenerative response to injury is induced. Although this regenerative response leads to the formation of new cardiomyocytes, their number is insufficient in mice but sufficient in lower vertebrates to replace lost cardiomyocytes. These molecular and cellular analyses provide basic knowledge essential for investigations on the regeneration of the mammalian heart aiming at epicardium-derived cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epicardial regeneration is guided by cardiac outflow tract and Hh signaling

In response to cardiac damage, a mesothelial tissue layer enveloping the heart called the epicardium is activated to proliferate and accumulate at the injury site. Recent studies have implicated the epicardium in multiple aspects of cardiac repair: a source of paracrine signals for cardiomyocyte survival or proliferation; a supply of perivascular cells and possibly other cell types like cardiom...

متن کامل

tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration.

Recent lineage-tracing studies have produced conflicting results about whether the epicardium is a source of cardiac muscle cells during heart development. Here, we examined the developmental potential of epicardial tissue in zebrafish during both embryonic development and injury-induced heart regeneration. We found that upstream sequences of the transcription factor gene tcf21 activated robust...

متن کامل

Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration.

The human heart's failure to replace ischemia-damaged myocardium with regenerated muscle contributes significantly to the worldwide morbidity and mortality associated with coronary artery disease. Remarkably, certain vertebrate species, including the zebrafish, achieve complete regeneration of amputated or injured myocardium through the proliferation of spared cardiomyocytes. Nonetheless, the g...

متن کامل

Cardiac regeneration: epicardial mediated repair

The hearts of lower vertebrates such as fish and salamanders display scarless regeneration following injury, although this feature is lost in adult mammals. The remarkable capacity of the neonatal mammalian heart to regenerate suggests that the underlying machinery required for the regenerative process is evolutionarily retained. Recent studies highlight the epicardial covering of the heart as ...

متن کامل

Epicardium Formation as a Sensor in Toxicology

Zebrafish (Danio rerio) are an excellent vertebrate model for studying heart development, regeneration and cardiotoxicity. Zebrafish embryos exposed during the temporal window of epicardium development to the aryl hydrocarbon receptor (AHR) agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exhibit severe heart malformations. TCDD exposure prevents both proepicardial organ (PE) and epicardium d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012